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A modification of dodecahydrotriphenylene, ClsH~4, has been found, different from that investigated 
by Chorghade. Rotation diagrams about [0001] show diffuse row lines and those about [1000] show 
diffuse layer lines. The cell has the dimensions 

a' ---- 10.45, c' ---- 15.50 A; n ---- 4, 

and may be reduced to a statistically occupied cell with the dimensions 

. a = 5.86, c = 7.75/~; n = 3" 

The disorder phenomena are the same as occur in closest packings of spheres. The intensity 
distribution on the row lines can be interpreted quantitatively by Wflson's theory, as extended by 
Jagodzinski. 

1. Introduction 

The generally accepted structurM, formula of do- 
decahydrotriphenylene, C18H24 , assumes a central 
benzene nucleus with three hydrogenated benzene 
rings symmetrically attached to it (Fig. 1). The hydro- 

C3 C3 ' 

C 2 ~ C 2  

C3 C2 C2 C3 

Fig. 1. C18•24 , structural formula of dodecahydrotrlphenylene. 

aromatic bonds between the C3 atoms could cause the 
occurrence of different geometrical isomers without 
trigonal symmetry, but the discussion of the space 
group will show that  this symmetry is nevertheless 
preserved by the molecule. 

The first sample was obtained from Dr E. Clar of 
Glasgow, and subsequent samples have later been 
synthesized from cyelohexanone by the method Of 
Mannich (1907). According to the method of crystalli- 

zation, different forms of crystals may be obtained 
(Fig. 2)" 

(a) Sublimation in a protective gas at atmospheric 
pressure and at a temperature just below its melting 
point, yields striped hexagonal needles, 2-3 cm. long 
and 0.3 mm. thick, built up by a rather regular 
succession of layers. 

(b) Crystallization by the rapid cooling of a hot 
saturated solution in benzene yields the same form 
as (a). 

(c) Crystallization by slow evaporation of a cold 
saturated solution in benzene yields hexagonal plates, 
hourglass-like striped double pyramids and clear 
prisms. 

The density, averaged from literature data (Ziegler 
& Ditzl, 1929), and our own measurements, is de°: = 
1.145±0.003 g.cm. -a. The molecular weight, M, is 240. 

2. Unit cell and missin~ spectra 
The dimensions of the unit cell were determined from 
rotation photographs about the hexagon edge a' and 
the needle axis c'. In the latter diagrams, taken from 
different crystals or of different parts of the same 
crystal, the row lines with h - k -  3n are sharp, the 
others diffuse (Figs. 3 and 4). If the diffuse reflexions 
are also taken into account, the diagrams give the 
following unit cell: 

a'  = 10.145t0.002, c' = 15-50±0.05 J~. 
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Fig. 2. C]sH=4 , crystals of different habit. 
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Fig. 3. C~sHsl , disordered crystal, 'hexagonal' variety, rotation 
diagram about [0001], showing diffuse row lines; CuK~ 
lNi filter). 
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Fig. 4. C~sH~l, disordered crystal, 'cubic' (or rather rhombo- 
hedral) variety, rotation diagram about [0001], showing 
diffuse row lines; Fe K ~  (monochromatic). 

Fig. 5. CIsH=4 , disordered crystal, 'hexagonal' variety, Laue 
diagram in direction [0001]. 
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The volume of the unit cell, V,  is 1394/~a and the 
number of molecules in the unit cell, n, is 4.01 = 4. 

Using Cu K s  radiation, the quadratic form for this 
cell reads: 

sin e 0 × 10 s = 7 " 6 7 ( H g + H K + K e ) + 2 . 4 7 L  e . 

Zero-layer and equi-inclination Weissenberg photo- 
graphs about c', up to the fifth layer line, have the 
symmetry  C6l; those about a' have the symmetry  Cez 
(classification after Buerger ,  1942) which gives the 
Laue symmetry  D6h, in agreement with a Laue photo- 
graph (Fig. 5). 

The asterisms in Fig. 5 (and still more the diffuse 
row lines in Figs. 3 and 4) make it apparent tha t  a 
disorder of the lattice is involved, similar to tha t  
already described by Wilson (1942) and Jagodzinski 
(1949a, b, c), and tha t  a statistically occupied super- 
lattice must be present. The fact tha t  diffuse and sharp 
lattice rods coexist, leads to the conclusion tha t  we 
have to deal with simple statistics of position. 

A more detailed inspection of the rotation photo-  
graphs of crystals grown :by different methods shows 
differences in the degree to which the two main types 

c, , 
of closest packing, hexagonal or eubm , are approached. 
In crystals grown by sublimation at  200 ° C., a tem- 
perature just  below the melting point, hexagonal 
packing (Fig. 3) predominat~s~ vchile in crystals grown 
by rapid cooling of a hot concentrated solution cubic 
packing (Fig. 4) prevails. In tim Original diagram of 
Fig. 4 special conditions of the focused beam have 
produced a direct im~age of different parts of the 
crystal on the weaker l~ t t i c e rods  ( H K L ) =  (20L) 
and (31L) in a direction~erlSencllcular to the c axis. 
In these spots the maximum has different values, 
owing to variations of the degree of disorder within 
the same crystal. (This detail is not visible in the 
reproduction.) 

The reflexions may be arranged in two groups" 

I .  Sharp reflexions" where h - k  = 0 (rood 3) and 
1 -- even. 

II.  Reflexions on the diffuse row lines : where h - k = O  

(mod 3) and 1 -- odd. 

The subsidiary weak m a x i m a  which appear on 
certain diagrams--on Fig. 3 b~rt not on Fig. 4---will 
not be considered for the ~moment. 

A law which would satisfy I and I I  simultaneously 
does not exist in the I n t e r n a t [ D n a l  T a b l e s  among the 
criteria of missing spectra. Compatible with it, how- 
ever, is the less specialized condition" 

III .  (h,h,2h,1) present only if 1 = even. 

The following additional law of missing spectra is 
strictly obeyed" 

IV. (3h,O,3h,1) present only if 1 = 0 (mod 4). 

* Or rather  rhombohedral  in this case. 
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All these facts* show tha t  a discussion of the space 
group cannot lead to a result free from contradiction 
if. the disorder phenomena are not taken into account. 

3. T h e  space  g roup  

The marked similarity between the rotation photo- 
graphs of ClaI-i2~ (Fig. 3) and wurtzite (Jagodzinski, 
1949c, p. 300, Fig. 1) suggested strongly the assump- 
tion tha t  in both cases one-dimensional disorder 
phenomena are involved, with the sole difference tha t  
in C18He4 molecules take the place of the ions of 
wurtzite. 

I t  appears tha t  in the case of one-dimensional dis- 
order the hk values of the sharp reflexions are such 
tha t  the phases of the diffracted waves are independent 
of the statistical occupation of the lattice points. For  
C18He4 the reflexions with h- /c  --- 0 (mod 3) have this 
property. 

In order to interpret the diffuse reflexions, let us 
make the assumption tha t  it is possible to occupy 
simultaneously in each layer of a closest packing of 
spheres (Fig. 6(a)) not only the positions A (and the 
translationally identical three positions) but  also the 
positions B(½, ~) and C(§, ½). The content of the origi- 
nal cell would be tripled, but this filled-up cell could 
then be reduced to a simple cell with one-third of its 
volume, in the same manner as a hexagonal cell 
oriented as H-groups can be reduced to the simple 
cell oriented as C-groups (see I n t e r n a t i o n a l  Tab les ,  
vol. 1, p. 7). 

In C18He4 the original large cell G plays with respect 
to the reduced cell g the role of a superstructure or 
superlattice. The reflexions common to both cells are 
sharp, those of the superstructure alone appear diffuse. 

The reduced cell g has the dimensions 

a = a ' / V 3  = 5.86, c = c ' /2  = 7.75/~ .  

The quadratic form of the cell g for Cu Kc~ radiation 
reads : 

sin e 0 × 10 s = 2 3 . 0 1 ( h e + h k + I c 2 ) + 9 . 8 8 1 2 .  

The halving of the c axis results from the limitation 
upon the shaxp reflexions. The volume of the cell 
is one-sixth of tha t  of the cell G, the number of the 
molecules per cell is ~ or ~. 

The transformation of the indices h, k, 1 of the cell 
g into the indices H, K, L of the cell G is: 

h = ½ ( - H - 2 K ) ,  k = ½(2H+K), i = ½ ( - H + K ) ,  
l =  ½L. 

We thus obtain the following corresponding index 
quadruples : 

* The existence of these special laws of extinction strongly 
suggested an a t t empt  at  the calculation of the parameters  
by the method of Ot t -Seyfar th  (Ott, 1927; Seyfarth, 1928a, b). 
However, this led to the impossible result tha t  all the 72 
carbon atoms should be arranged, one above the other, along 
the axis [00] and I t  ~], respectively [~ 0] etc. 
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Fig. 6. (a) Single layer of a close-packed arrangement. AAAA : base of the hexagonal unit cell. B and C: possible positions f o r  
the origin in the neighbouring layer. (b) Relative positions of the molecules in two neighbouring layers, the origin occu- 
pying statistically the three possible positions A, B, C. The reduced cell g (ABCA) is marked in dotted lines. 

G(HKIL) g(hkil) 
(H,H,2H,L) (H,O,H,½L) 
(3,0,3,4n) (1,1,2,2n) 

(415L) (2,1,3,½L) etc . . . .  

By  this transformation of indices, law IV of missing 
spectra is changed into 

IV'.  (h,h,2h,1) present only if 1 = even. 

The fact tha t  such a law is also valid for g shows 
tha t  this cell must  be doubly primitive. The content 
of the cell g has been found to be ~, but  the statistics 
triple the occupation and we thus obtain 3 × ~ = 2 
molecules per cell, which is in agreement with the law 
of missing spectra. 

Taking into account tha t  (h£O1) is present in all 
orders, law IV'  leads to the space groups C-62c, C6mc, 

C6/mmc. The centres of the two molecules must be 
located at twofold sets of homologous points. 

The same result is obtained by considering the 
molecular symmetry  (Fig. 1) which must be at least 
Ca and which requires tha t  the centres of the mole- 
cules lie on an axis which is at least trigonal. The 
choice of the correct space group depends, therefore, 
on an exact knowledge of the molecular symmetry.  

The ceU g 
In  the reduced cell g a molecular symmetry  

3m-Daa would require (a) in C6/mmc,, 
3m-Oa, would require (a) or (b) in C6mc, 
32-D a would require (a) in C62c, 
~-Cah would require (b), (c) or (d) in C-62c, 
-gm2-Dah would require (b), (c) or (d) in C6/mmc. 

The molecule cannot be perfectly planar for the 
intensities on the sharp row lines (with h - k  = 3n) 
alternate slightly but  perceptibly; this would not occur 
if IFI were the same for all values of 1 apart  from the 
regular atomic f-factor decline (see also p. 485). The 
inner ring (C z in Fig. 1) is most probably planar, 
owing to its benzene character, and the C9 atoms may  
perhaps also lie in the same plane. The C a atoms, 
however, certainly lie above or below tha t  plane. 

The missing centre of symmetry_in the structural  
formula excludes the symmetry  3m. There remain 
only the molecular symmetries 6m2, 6, 32 and 3m for 

discussion; 6 and 6m2 depend upon the presence of a 
horizontal mirror plane in the molecule and make the 
space groups C6/mmc or C62c more probable. However, 
if the molecule is supposed to be non planar but  is 
nevertheless to contain a horizontal symmetry  plane, 
the protruding atoms have to be distributed statisti- 
cally above or below this plane. Such a 'molecule' has 
only a statistical significance. If the protruding atoms 
lie in all molecules on one side of the plane, the point 
symmetry  3m would automatically result, leading to 
the space group C6mc. The molecular symmetry  32 
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can occur only in the space group C-62c (position (a)) 
and symmetry 6m2 only in space group C6/mmc in 
positions (b), (c), (d). The latter, however, can be 
realized only statistically. 

All the above-mentioned possible homologous points 
for the center of the 'molecule' have in common that, 
to each 'molecule' there belongs always another 
'molecule' translated by ½c±}(a~-al) and turned by 
180 °. (In C6mc (a) only the vertical shift occurs. 
However, this latter position may be excluded for 
statistical reasons.) 

If we consider the equivalent homologous .points 
(c) and (d) in C6/mmc, we immediately see (Fig. 1) 
tha t  C1 would occupy the homologous points 12(j), 
C~ a similar position but with other parameters x', y', 
while Ca would occupy the homologous points 24(/): 
(x, y, z); however, this occupation can occur only 
statistically with weight ½ if the horizontal symmetry 
required by the space group is to be achieved; the 
number of atoms per double 'molecule' is then 12 for 
each kind of C atom, C1, C9 and C a. 

The analogous case of the homologous points (b) in 
the space group C6mc (inherent symmetry 3m) re- 
quires that  each of the three kinds of carbon occupies 
twelvefold homologous points (d). 

For statistical reasons (see p. 485) we can exclude 
the homologous points (a) and (b) in the space group 
C6/mmc and C-62c, as well as the homologous points 
(a) in C6mc. This, too, is in agreement with the 
accepted molecular structure. 

The space group C-62c seems improbable for another 
reason. Locating the molecular centers in (a) or (b), 
we had to accommodate the 12 C1 atoms and the 12 C2 
atoms in the two different sixfold equivalent positions 
6(g) or 6(h), twelvefold points not being available in 
this space group. This would be contradictory to the 
very probable equivalence of all C 1 or 09. atoms. In 
this space group, too, all atoms being outside the 
horizontal mirror plane have to be doubled by the 
statistics. One degree of freedom of rotation about the 
trigonal axis still exists. 

The final conclusion favours (c) or (d) in C6/mmc 
with -6mc as point-group symmetry. I t  has therefore 
been used as a basis for all the subsequent work. 

4. The disorder phenomena 

:For a statistical discussion we may start from a 
horizontal sheet of (fourfold) primitive unit cells G. 
By horizontal planes it ~an be subdivided into four 
single layers of molecules. Because of the mutual 
coupling of two molecules (say A and A', B and B' 
etc.) in consecutive layers, as already mentioned on 
p. 481, the whole crystal splits into two interpene- 
trating systems of alternating layers, an 'unprimed' 
one containing all odd layers, and a 'primed' one 
containing all even layers. The three possible positions 
A, B, C (or A', B.', C') occur in each system (see 

p. 479 and Fig. 6(a)). Each system contains only half  
the total number of layers, v = ½N. 

We will call m the order number of subsequent 
layers in the crystal and # that  within each of the 
two partial systems. 

In order to obtain the statistical cell g we may put 
the origin A of a 'generating' or 'carrier' cell A A A A  
(Fig. 6(b)) in the three possible :posfliions A, ,B, C (see 
Fig. 6(a)). The height of this 'generating' ,cell is only 
½c' = c. In this cell the two molecules M~ and M~, 
must be located on the two trigonal axes A and ._/-. 
In C-6mc they would lie in z and ½+z, in C6/mmc in 
¼ and }; they always differ in level by ½c. Fig. 7 

z/ " / 

o ~" / '~i c~'~ 

Fig. 7. Relat ive positions of molecules in two consecutive 
layers (representat ion equivalent  to Fig. 6(b)) O :  mole- 
cules in level z. C): molecules in level z +  _~. 

differs from Fig. 6(b) in that  the origin of the generat- 
ing cell is moved into the positions Ma and MA,. 
Fig. 7 shows immediately that  the positions A', B', C" 
are perfectly equivalent relative to any one of the 
positions A, B, C and vice versa. (In reality they 
cannot be occupied simultaneously.) 

If we begin to build up ,the crystal layer by layer, 
and if we put the origin of'the first layer in any of the 
positions A, B, C, the origin of the next layer may be 
put with uniform probability ½ in one of the positions 
A', B', C'. Correspondingly, if the interactions between 
the layers reach only as far as one layer, the origin 
of the third layer may be put in one of the positions 
A, B, C with the same probability ½. In this case the 
statistics are independent of the arrangement of pre- 
ceding layers. Conditions change, however, if the direct 
interaction reaches from the first to the third layer. 
Here a discrimination between the possible positions 
becomes necessary. For, if we had given the (m-2) th  
layer a position A, the probability, P(A), of finding the 
ruth layer also in position A would no longer match 
P(B) and P(C), which, however, remain equal. 

The insertion of layers with a definite probability 
between the consecutive layers of one system brings 
about a statistical independence of the possible posi- 
tions in the two systems, and that  without regard to 
the range of interaction. The insertion also allows us to 
make the/~th and the (/~±l)th layer identical within 
a single system without violating the principle of 

AC6 31 
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closest pack ing  of spheres for the crystal as a whole. 
This is allowed for by  introducing 'a partial  probabil- 
i ty  7. 

We see from the foregoing how mutual  coupling of 
positions A, A ' ,  etc. causes the difference between our 
problem and tha t  of simple closest packing, e.g. cobalt 
(Edwards & Lipson, 1942). The statistical t rea tment  
may, therefore, be reduced to tha t  of two identical 
partial  systems. 

5. The partial probabilities 

According to the range of interaction on which we base 
the mathematical  analysis, we have to choose different 
part ial  probabilities. For  the case a = 3, i.e. inter- 
actions over three layers (Jagodzinski, 1949b), they 
are given in Table 1. 

Partial  
probabili ty 

Table 1. Part ia l  probabilities for  the case a = 3 

Initial  state hexagonal 

Three layers in hexagonal order 
are followed by  a fourth layer 
in hexagonal order ABA[B 1 -- oc 

Three layers in hexagonal order 
are followed by a fourth layer 
in cubic order ABA[ O o~ 
(probability of a mistake in a 

hexagonal sequence) 

Partial  
probability 

Initial s tate cubic 

Three layers in cubic order are 
followed by  a fourth layer in 
hexagonal order ABC[B 1-- fl 
(probability of a mistake in a 

cubic sequence) 

Three layers in cubic order are 
followed by a fourth layer in 
cubic order ABC[A fl 

For sake of simplicity we will restrict ourselves to 
the case a = 2 in which the hexagonal arrangement is 
considered the normal state of order and each devia- 
tion from it is regarded as a mistake (e.g. C in the 
following scheme)" 

hexagonal 

hBABABC 
cubic 

For  .the se.quence A - B - X  the part ial  probabilities 
a r e :  

7 for finding X = B ('first' layer interaction, 
a =  1), 

1-c~ for finding X =- A ('second' layer interaction, 
a = 2); 

and consequently 

c~-7 for finding X = C. 

This new scheme may  be compared with tha t  for 

the earlier problem in which closest packing was 
adhered to strictly so tha t  7 = 0. Then c~ = 0.5 and 

= 0 implies a continuation of a given (hexagonal) 
arrangement with equal probabili ty in either the  
hexagonal or the cubic sense, while for c~ > 0.5 the 
hexagonal arrangement tends to turn into the cubic. 

6. The intensity formulae 

The intensity of the sharp and the diffuse reflections 
are determined by the formula of Wilson in its ex- 
tended form (Jagodzinski, 1949a). In  this, the mean 

values SjS~+m enter and for their formation every 
layer of both systems has to be taken in turn as the 
zero layer. 

In  order to interpret the intensity behaviour in the  
sharp and diffuse lattice rods, we shall calculate ex- 

plicitly the mean value SiS*+m separately for m odd 
and m even. 

For  the first case we introduce the hitherto un- 
known probabili ty P~ for the occurrence of the same 
position after m steps, its calculation being shown later. 

1. m odd 

= [ F a , + F ] , + F c ,  ] SiS*+m ½ ( ½ [ F a + F ~ + F c ] ~  * * * 

+½[Fa ,+F~ ,+Fc , ]½[F*  + F ~ + F c ]  ) 
= ~ ( F a K F * , K *  + F a , K F * K * ) .  

F a is the amplitude of the molecule, F a, the structure 
amplitude of the same molecule but  translated as in 
Fig. 6(b) and also turned by 180 °, and 

K - 1 +exp  [ 2 r d ( h - k ) / 3 ] + e x p  [ - 2 r d ( h - k ) / 3 ]  = K * .  

K becomes 0 for h - k  ~ 0 (rood 3) and hence also 

sjs +;. = o. 
For h - k  ~ 0 (rood 3) we obtain, however, SjS*+m = 

½ ( F ~ * ,  * + F a F a , ) .  

2. m even 

SjS*+m = ½(½Fa[PmF* + (1 -P ro ) (F*  + F$)/2] 
+ ½ F ~ [ P m F * + ( 1 - P m )  * * 1 * (F o + Fa)/2] + -~F c [PmF c 
+ (1 - Pm)(F* + F*)/2] + analogous terms with 

A',  B',  C' instead of A, B, C) .  (1) 

For h - k -  0 (rood 3), and because then 

F a = F~ = F c ,  

we obtain SiS?+m = [F~[ ~ 

From these results we see immediately tha t  the  
calculation of the intensities splits into two distinctly 
different cases: 

(a) h - k  -- 0 (mod 3) and 
(b) h - k  ~ 0 (mod 3) .  

One equally recognizes the result, already known, 
tha t  in the first case the mean value becomes statisti- 
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(/z- 2) th layer 'thus': Pp-2 'not thus' (IX): 1 -Pp-2 

(p-  1) th layer 'thus' (I) 'not thus' (11) 'thus' (Ill), 'not thus' (IV) 

i 
7 i l - a  

i _ "_"2"272":"':'2":'":'2 : ..................... 
~th layer thus' (V) 'thus' (VI) 'thus' (VII) 'thus' (VIII): P/, 

Fig. 8. Scheme for the probabilities of transitions from a given position 'thus' to the same or other positions ('thus' or 'not 
thus') in neighbouring layers. Roman numerals in parentheses designate partial probabilities. 

AO 

A! B 1 C1 

/ I \ / I \ / I \ 
A 2 B2 C 2 g 2 B 2 C 2 A 2 B 2 C 2 

A A A A A A A 
/IX /IX /IX /IX II\ /IX /IX II\ /IX 
% 8a % % 83 % Aa e3 % % % ca % % ca % % ca % % ca % % ca % % % 

Fig. 9. Scheme of probabi l i t ies  for the  coincidences of molecular  posi t ions  in succeeding layers.  

cally independent ,  giving sharp reflexions, while in 
the second case the reflexions become more or less 
diffuse owing to the dependence upon cos z L (see 
formula  (8)). 

We now examine  the two cases separately:  

(a) h - k  = 0 (rood 3) 

I t  appears from the foregoing results tha t  the 
intensit ies of these reflexions can be calculated as 
though one had  to deal with the reduced cell g in an 
orderly lattice. 

I t  is therefore possible for the calculation of these 
reflexions to use the conventional  methods of s tructure 
analysis ;  in order to obtain absolute intensit ies i t  is 
necessary to mul t ip ly  the  structure ampl i tudes  of the 
molecule by  ½ because of the stat is t ical  occupation. 

(b) h - k  ~ 0 (mod 3) 

Because of the disappearance of SIS*+,, for m odd 
it seems useful to re turn  to the conception of the two 
systems and to use /x  as summat ion  index. 

Wilson's  formula  now contains two equal  terms, 
each having  the form 

½N--1 
I = R ~" (½N-[#I)SjS~+~, exp [2~ri/~A3] , (2) 

~=-(~2~-1) 
where 

A a --= ( ~ - ~ 0 ) C / ~  = ½L = l ;  

Jc[ = c corresponds here to the  cell g and not  to the 
single in ter layer  distance. 

In  order to use equat ion (2) we need a recurrence 
formula  for the  probabi l i ty  P~, i.e. the  probabi l i ty  
of f inding in the layer  # the same position as in the 
zero layer.  

Fig. 8 shows the  scheme for the interact ions in this  
case. A nota t ion independent  of the  special positions 
A or B or C is obtained when we denote always the 
position of the. layer  of reference by  t ( ' thus')  and the  
remaining  two ind iscr imina te ly  by  nt ( 'not thus ') .  
If  far-reaching interact ions are to be considered, how- 
ever, e.g. in a sequence n t - n t - t ,  we must  discr iminate  
between the possibilities nt'  = n t"  and nt'  4= nt" ,  and 
so on. Fig. 8 also differs from Jagodzinski ' s  (1949b, 
p. 209) Table 1, in t ha t  sequences t - t  are not  ex- 
cluded. 

The probabil i t ies  for the coincidences of the mole- 
cular positions in succeeding layers are shown in 
Fig. 9. 

According to Fig. 8 we have 

( I ) -  r .P~-2,  ( I I ) - -  (1 -~ ) .P ,_2 ,  

and by  defini t ion 

( I ) + ( I I I )  = P ~ - I ,  
so tha t  

31" 
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(III) = P ~ _ ~ - y . P ~ _ ~ .  
Similarly 

(II)+(IV) = 1 - P v _ , ,  
and hence 

(IV) = 1-P~_~-(1-~)P,_~. 

The following relations are also evident from Fig. 8: 

(v) = ~,.(I) = y~..P,_~, 
( v I )  = ( 1 - ~ ) . ( I I ) =  ( 1 - a ) ( 1 - y ) P , , _ 2 ,  
( v i i )  = r . ( I I I )  = ~.P.-~-~.P.-2. 

In  order to obtain (vi i i )  from (IV), two transition 
probabilities still have to be defined. Corresponding 
to the two possibilities nt' = n t"  and nt' 4= nt",  there 
are two ways leading from (IX) via (IV) to (v i i i ) ;  
(IV) may  be expressed as the sum of two partial  
probabilities: 

(IV) = 1 - P , _ ~ = ( 1 - r ) P , _ ~  = ( I V h + ( I V h .  

For the first possibility we have between (IX) and 
(IV) the transition probability y and hence 

(IV)x = (1-Pv_2)y ,  
so that:  

(IV), = 1 - P ~ , _ x - ( 1 - y ) P ~ , _ ~ - ( 1 - p ~ , _ ~ ) y .  

Reference to Fig. 9 shows tha t  the last step to- 
wards VI I I  (B1-> B e -+ Ca) occurs in case (IV)x with 
the partial  probability ½ ( l - y )  and in case (IV)2 
(B~ -~ C~ -+ A a, C~ -+ B~ -~ Aa) with c~-y. We there- 
fore have 

(viii) = (IVh.½(1-y)+(IVh(~-y).  

Final ly we obta in  

P ,  = ( v ) + ( v I ) + ( v I I ) + ( V l I I )  

and, by introducing the expressions deduced for the 
individual summands, we obtain the recurrence for- 
m u ] a ,  

P~,-P~,_~(2y-oc)-Pu_9[1-2~x + y ( 3 a - - ~ y - ½ ) ]  
- ( 1 - y ) ( c ~ - ½ y )  = 0 .  

By substitution of /~-1 for ~t and by subtraction 
of the resulting expression from the former, one ob- 
tains the holilogeneous equation 

P~,-P~,_~(1 + 2 y -  a ) - P ~ _ 2 [ 1 -  a + y ( 3 a -  ~ ? - ~ ) ]  

+/'._a[1-2a+y(3oc-,}y-½)] = O. 

By introduction of 
P l . t  = X lu 

there results 

# ' -3 (xa-x~(1  + 2 y -  o O - x [ 1 -  ~ + y(3~x- ~ y -  :~ )] 
+ 1 -2~x+y(3a- -~-y-  ½)} = O. 

One trivial root of the equation is 

x l =  1 .  

Division by x - 1  then gives the quadratic equation 

x ~ - ( 2 y - a ) z - [ 1 - 2 a + y ( 3 a - } y - ½ ) ]  = 0 (3) 

with the roots 
X2, X 3 ~- V- - } -W , 

where 

w = ½{(c~-2y)9~-~[:-2~+?(3~-:~y-½)]}½ (4) 
and 

v = ½(2~,--~). (5) 

By putt ing in general 

Pt, = F +  Axt~+Ex~ (6) 

and by specializing for /~ = 0, and considering tha t  

/ ' _ -½,  
we obtain 

1 = ½ + A + E .  (7) 

Further,  for/~ = 1 we obtain 

~ + A x ~ + ( ~ - A ) x 3  = ~, 

and thence for the coefficients 

1 - o ~ - y  / . 
E , A  =½(14- ~ / (7a) 

Thereby we have obtained Pv and are able to 
evaluate Wilson's equation. 

For the diffuse lattice rods ( h - k .  0 (mod 3)) we 
obtain 

SIS*+~, = ½]FI~[3P~, - 1] = ~ ]F]~(Ax~ + Ex~) , 

and the combination of the two terms like equation (2) 
gives 

½x-1 
I = 3]FI2R Z (½N-I~])(Ax~'+Ex~)  exp [2~i/~½L] 

~=-(½~'-1) 

1-x  
~ 3 R N I F I  2 A 1-2x9. cos reL+x~ 

+ E  l _ 2 x  a cos ~rL+m~J " " " (8) 

This expression has been obtained by neglecting 
two terms which become infinitely small for large 

values of N~. They correspond to the 3rd and 5th terms 
in Wilson's (1942) equation (14). 

Equatior/(8) differs from that ,  valid for the normal 
closest packing of spheres, only by the term + y  in v 
(see equation (5)) and by. the additional term mul- 
tiplied by y under the root of equation (4). The effect 
of the lat ter  is relatively unimportant ,  but  the in- 
fluence of y in v is much more marked. 

The quant i ty  in brackets Q - I/3RN[.F[ ~ has, from 
its dependence on L, extreme values if L is an integer. 
I t  may  be supposed tha t  
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0 < ~ , _ < ½  and 0 _ < a _ < 2  t (see p. 482).  

Wi th in  these two ranges the absolute term of equa- 
t ion (3) remains negative. The two roots x~. and x a 
mus t  therefore have  opposite signs. 

So long as 2~ < a, i.e. the structure approaches a 
closest packing of spheres (~, = 0), v is negative from 
(5) and thus 

Ix~l > lx~l.  

In  any  case E is > A because w in (7a) is always 
positive and a+~,  < 1. 

Because x 2 is positive, the first te rm in (8) gives 
m a x i m a  at points where L is even, and because xa is 
negat ive the second term gives m a x i m a  where L is 
odd. I t  is easily seen tha t  the m a x i m a  of the second 
term are much more pronounced since E > A and 

lx~l > Ix~l. 
We have 

l - x 2  1 - x  3 
for L odd Qodd = A : - - - - - + E - - ,  

I+X2 1 + x  3 

1 + x  2 1 + x  a 
for L even Qeven = / 1  : - - - - + E - -  

l - x ~  1 - x  3 

The first formula  shows that ,  for the appearance of 
the m a x i m a  for L odd on the diffuse latt ice rods, the 
strict prohibi t ion of an immedia te  sequence of identical  
positions (7 = 0), which is true of a closest packing of 
spheres, is not  required. 

However, the m a x i m a  become more and more 
diffuse as the value of 7 increases. Equa t ion  (8) shows 
the influence which the value of 7 exerts on the in- 
tens i ty  distribution. So long as 2 7 < a, IXa[ > Ix~[, 
i.e. the m a x i m a  for L odd are sharper. The reverse 
is also true but  has never been observed on the photo- 
graphs.  

The behaviour  of the sharp reflexions, too, can  
easily be understood qual i ta t ively.  }Iere we have  to 
deal with a doubly pr imit ive  cell, g, and because of the  
t ransla t ion of the molecular centers by  ½c we have to 
expect intensit ies to ta l ly  different from those obtained 
by using the simple structure factors of the molecule 
(see the latt ice rod (41L) in Fig. 3). 

I t  has a l ready been ment ioned (p. 479) tha t  dif- 
ferent degrees of approximat ion  to both types  of 
]~acking (hexagonal and cubic) exist. They  differ b y  
the in tens i ty  dis t r ibut ion on the diffuse row lines. The 
diffuse latt ice rods (row lines) of the  'hexagonal '  
var ie ty  show principal  m a x i m a  at L odd and between 
them secondary m a x i m a  at L even. Fig. l0  shows the 

12 
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2 

o 

~] I! calculatedwitha=O37;y=O;fl=O.]/ I~ 

Z :. / ~, 

/ '~ / , 

L='-I ' L='-~ ' LLO ' L =~ L =1 
Reciprocal c ax~s 

Fig. 10. Rectified photometric curve of the diffuse lattice rod 
(40L), 'hexagonal' variety, showing a secondary maximum 
at L = 0. Broken curve calculated with a = 0.37, F = 0 
(8 = 0). 

7.  D i s c u s s i o n  

From equat ion (8) it follows tha t  the intensit ies on the 
diffuse row lines are de termined by  the structure 
factor of the single molecule and  not  by  tha t  of the 
uni t  cell. This is in accordance with the facts:  for low 
values of L, the intensit ies on all diffuse row lines 
behave approx imate ly  identically,  but  for L = 5 and 
more, discrepancies become evident ;  e.g. the rod (20L) 
is considerably weaker t h a n  (21L) at  the point  L = 0; 
but  for L = 5 the  intensit ies are comparable.  This is 
evidence for the non-p lanar i ty  of the molecule (cf. 
p. 480). 

This result  also justifies the exclusion of the homo- 
logous points (a) in the space group C6mc and (a), (b) 
in the space groups C6/mmc and C-62c, because there 
the molecules would lie directly one above the other 
and  the positions A ' B ' C '  and A B C  would be equivalent  
and hence not s tat is t ical ly independent  of one another.  
But  just  this independence explain s the str iking prop- 
er ty  tha t  the in tens i ty  on the diffuse latt ice rods 
al ternates  with a double period. 

. - ,  ,i / ~ - - . ._J/  I~. 

,. /)' / \',', 
/ / /  \ ',,), 

/ / I  \ ',', / / /  ", ',", 
/ / /  \ ,.,', 

-~ I I /  \ ,.', ,-- _ / / /  \ \ \ 

e.. / / /  k ", ',,, 
- -  , , , /  \ ~ , 

2 °~/ observed 0-~, ',, 
~___-:: : : . .~" . . . . .  calculated for  a -0.53; y = O. " ~ . ' - - ~ - ~ ,  

. . . . .  • . . . . .  calculated for  a = 0.57;(~ = 0);8 = 0.67." . . . . . . .  - 

0 , I"~ I I='~ I=I 
, , , '½ ' , >' 

L=I  Reciprocal t ax is  L - 2  

Fig. 11. Rectified photometric curve of the diffuse lattice rod 
(40L), 'cubic' variety, showing split maximum at L = 1; 
the dot-dash curve is calculated with a = 0.57, (~ = 0), 

= 0.67. 
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photometer  curve* of the diffuse latt ice rod (40L) of 
the  'hexagonal '  var ie ty ,  with the  weaker  m a x i m u m  at  
L = O .  

The curve, calculated with c~ = 0.37, 7 = 0(fl = 0) 
is in best agreement  with the  observed values. 

In  the photometer  curve (Fig. 11) of the  'cubic'  
va r ie ty  (Fig. 4) the m a x i m u m  at  L = 0 is missing and 
the m a x i m u m  at  L = 1 is split. According to the  
conception hi ther to  employed of a s tack of three 
double layers, the intensi ty  distr ibution m a y  be 
satisfied by  the par t ia l  probabilit ies c~ = 0-63; 7 = 0. 
F r o m  (3) it  follows t h a t  x~, x 3 are complex for ~ = 0.63, 
and  this results in the split m a x i m u m  (see Wilson, 
1942, p. 281). A still bet ter  agreement  is achieved if 
a s tack of four double layers is considered. The 
respective formulae have  a l ready  been developed in 
an earlier paper  (Jagodzinski,  1949b). In  Fig. 11 the 
do t -dash  curve has been calculated using the para-  
meters  c~ = 0-57; ~ = 0.67 (with the  auxi l iary con- 
dition of ~, = 0). I n  the  'cubic'  va r ie ty  ~ as well a s  fl 
mus t  be greater  t han  0.5. The condition 

= 1 - ~  = ~ = 1 - / ~  = 0 . 5  

would mean  the  purely  s tat is t ical  a r rangement  of the 
layers, i.e. the absence of any  influence of the  order 
a l ready  achieved, upon the  a r rangement  of the re- 
maining layers. 

The mean  value between o~ = 0-57 and ~ = 0.67 is 
0.62, which represents the  mean  par t ia l  probabi l i ty  
for the  cubic continuat ion of either a hexagonal  or a 
cubic ar rangement .  

T h i s  value is pract ical ly  identical  with t h a t  obtained 
by  the  previous method  of calculation. The absolute 
value of the difference, ½ ( a + f l ) - 0 . 5  = 0 . 6 2 - 0 . 5  = 
0.12, is pract ical ly  identical with the  corresponding 

* The photometer curves along a row line were rectified 
by plotting them on a linear scale after subtraction of the 
background fogging in the immediate neighbourhood of the 
measured points. The asymmetry due to the atomic scattering 
factor and the structure amplitude were equalized insuch a 
way that the shape of the curve in the middle and the end 
became nearly symmetrical. The broadening effect due to 
the finite size of the crystal was also taken into account. 
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difference ~ - 0 . 5  -- 0 . 37 -0 -5  = - 0 . 1 3  of the  'hex- 
agonal '  va r ie ty  (Fig. 10), i.e. the pure probabi l i ty  of 
the  occurrence of a mis take with respect to either a 
hexagonal  or a cubic a r rangement  is the  same. The 
deviations have  hence the  same values, but  opposite 
signs. This is in accordance with experience obtained 
with SiC and ZnS (Jagodzinski,  1949d) and it  means  
t h a t  the  continuance of growth is not  specific with 
respect to the  degree of order a l ready  achieved. There 
is, however,  no indication t h a t  this can be explained 
by  the en t ropy  of vibrat ion of the  latt ice as has  been 
suggested by  one of us (Jagodzinski,  1949d). 

The principle of closest packing 7 = 0 together  wi th  
Wilson's results suffice to represent  both kinds of 
curves. There is therefore no need to consider the  more 
complicated case of ~, # 0. The reason why  the  con- 
dition of closest packing is so closely obeyed for both  
'variet ies '  is not  obvious. Because of the  insertion of 
the  second layer sys tem there is no apparen t  necessity 
for this. 

The complete s t ructure  analysis could not  be in- 
cluded in this paper,  because the ordered crystals  have  
been obtained only af ter  the  completion of the present  
work. The relations which exist between Chorghade 's  
form (1944) and this modification will be discussed in 
a la ter  paper.  
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